翻訳と辞書
Words near each other
・ Gelert's Farm Works
・ Geles Cabrera
・ Gelesis
・ Gelete Burka
・ Gelett Burgess
・ Gelett Burgess Children's Book Award
・ Gelevara Deresi
・ Geleya
・ Geleyeh
・ Geleyerd, Mahmudabad
・ Geleznowia
・ Geležiai
・ Geležinis Vilkas
・ GELF
・ Gelfand
Gelfand pair
・ Gelfand representation
・ Gelfand ring
・ Gelfand–Graev representation
・ Gelfand–Kirillov dimension
・ Gelfand–Mazur theorem
・ Gelfand–Naimark theorem
・ Gelfand–Naimark–Segal construction
・ Gelfand–Raikov theorem
・ Gelfand–Shilov space
・ Gelfand–Zeitlin integrable system
・ Gelfingen
・ Gelfond's constant
・ Gelfond–Schneider constant
・ Gelfond–Schneider theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gelfand pair : ウィキペディア英語版
Gelfand pair
In mathematics, the expression Gelfand pair is a pair ''(G,K)'' consisting of a group ''G'' and a subgroup ''K'' that satisfies a certain property on restricted representations. The theory of Gelfand pairs is closely related to the topic of spherical functions in the classical theory of special functions, and to the theory of Riemannian symmetric spaces in differential geometry. Broadly speaking, the theory exists to abstract from these theories their content in terms of harmonic analysis and representation theory.
When ''G'' is a finite group the simplest definition is, roughly speaking, that the ''(K,K)''-double cosets in ''G'' commute. More precisely, the Hecke algebra, the algebra of functions on ''G'' that are invariant under translation on either side by ''K'', should be commutative for the convolution on ''G''.
In general, the definition of Gelfand pair is roughly that the restriction to ''H'' of any irreducible representation of ''G'' contains the trivial representation of ''H'' with multiplicity no more than 1. In each case one should specify the class of considered representations and the meaning of contains.
==Definitions==
In each area, the class of representations and the definition of containment for representations is slightly different. Explicit definitions in several such cases are given here.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gelfand pair」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.